http://udel.edu/~mcdonald/statnested.html
http://psych.colorado.edu/~carey/Courses/PSYC5741/handouts/Nested_ANOVA.pdf
http://www3.imperial.ac.uk/pls/portallive/docs/1/1171923.PDF
Monday, February 25, 2013
Monday, February 18, 2013
http://ekhartman.berkeley.edu/work/ANOVA.pdf
http://www.statsoft.com/textbook/anova-manova/
http://animsci.agrenv.mcgill.ca/servers/anbreed/statisticsII/type1.htm
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://www.pindling.org/Math/Statistics/Textbook/Chapter10_ANOVA/ANOVA.htm
http://statwww.epfl.ch/davison/SM/SMsample.pdf
http://www.statsoft.com/textbook/anova-manova/
http://animsci.agrenv.mcgill.ca/servers/anbreed/statisticsII/type1.htm
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://www.pindling.org/Math/Statistics/Textbook/Chapter10_ANOVA/ANOVA.htm
http://statwww.epfl.ch/davison/SM/SMsample.pdf
Wednesday, February 6, 2013
Linear Regression explained on YouTube
http://www.youtube.com/watch?v=ocGEhiLwDVc
Linear Regression in R:
http://www.montefiore.ulg.ac.be/~kvansteen/GBIO0009-1/ac20092010/Class8/Using%20R%20for%20linear%20regression.pdf
Linear Regression in Excel:
http://office.microsoft.com/en-us/excel-help/perform-a-regression-analysis-HA001111963.aspx
Linear Regression in SAS:
http://www2.math.umd.edu/~slud//s798c/Handouts/Lec03Pt5B.pdf
http://www.youtube.com/watch?v=ocGEhiLwDVc
Linear Regression in R:
http://www.montefiore.ulg.ac.be/~kvansteen/GBIO0009-1/ac20092010/Class8/Using%20R%20for%20linear%20regression.pdf
Linear Regression in Excel:
http://office.microsoft.com/en-us/excel-help/perform-a-regression-analysis-HA001111963.aspx
Linear Regression in SAS:
http://www2.math.umd.edu/~slud//s798c/Handouts/Lec03Pt5B.pdf
Monday, February 4, 2013
Booting up SaS
Sassy
(*Note: Though this class is primarily focused on learning and manipulating data using the SAS or JMP statistical packages, I will be programing and posting solutions in R. I may try to post equivallen solutions in SAS simultaneously for those that are interested in learning both. R is free and does not require 22 Gazigabytes. )
T-Test:
History for the nerds-
http://en.wikipedia.org/wiki/William_Sealy_Gosset
Basic t-test with calculator-
http://www.stattools.net/tTest_Exp.php
More detailed explanation-
http://simon.cs.vt.edu/SoSci/converted/T-Dist/activity.html
Regression + ANOVA = ANCOVA
Regression:
Regression explained:
http://www.law.uchicago.edu/files/files/20.Sykes_.Regression.pdf
more simply:
http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm
http://easycalculation.com/statistics/learn-regression.php
And explained well:
http://www.sjsu.edu/faculty/gerstman/StatPrimer/regression.pdf
Goodness of fit explained:
http://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html
Regression in SAS:
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/sasreg1.htm
http://www.youtube.com/watch?v=Bzm8TJYFZcs
Regression in R
http://msenux.redwoods.edu/math/R/regression.php
Model I and II regressions:
http://www.mbari.org/staff/etp3/regress/about.htm
WOOOOO!
(*Note: Though this class is primarily focused on learning and manipulating data using the SAS or JMP statistical packages, I will be programing and posting solutions in R. I may try to post equivallen solutions in SAS simultaneously for those that are interested in learning both. R is free and does not require 22 Gazigabytes. )
T-Test:
History for the nerds-
http://en.wikipedia.org/wiki/William_Sealy_Gosset
Basic t-test with calculator-
http://www.stattools.net/tTest_Exp.php
More detailed explanation-
http://simon.cs.vt.edu/SoSci/converted/T-Dist/activity.html
Regression + ANOVA = ANCOVA
Regression:
regression coefficient = 

(*Note: The n or n-1 will cancel when the cov is divided by the var, thus whether the correction is applied or not is irrelevant)
Regression explained:
http://www.law.uchicago.edu/files/files/20.Sykes_.Regression.pdf
more simply:
http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm
http://easycalculation.com/statistics/learn-regression.php
And explained well:
http://www.sjsu.edu/faculty/gerstman/StatPrimer/regression.pdf
Goodness of fit explained:
http://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html
Regression in SAS:
http://www.ats.ucla.edu/stat/sas/webbooks/reg/chapter1/sasreg1.htm
http://www.youtube.com/watch?v=Bzm8TJYFZcs
Regression in R
http://msenux.redwoods.edu/math/R/regression.php
Model I and II regressions:
http://www.mbari.org/staff/etp3/regress/about.htm
WOOOOO!
HW # 1
To those who unfortunately are reading this as opposed to vacationing in Vegas,
Andrew Jones
Biometry
2/3/13
Small Arabinose Negative Lineages vs. Large Arabinose
Negative Lineages
Average of Small-
|
0.765635645
|
|
0.890993539
|
|
0.860948991
|
|
0.886212273
|
|
0.859489471
|
|
0.934212218
|
|
0.945863536
|
|
0.999423109
|
|
0.899233247
|
|
0.787217193
|
|
0.938261524
|
|
0.984696833
|
|
0.83820725
|
|
0.827858702
|
(∑Obs)/n where n = 14.
(1) Mean = .887
(2) Var = (∑(obs-µ)^2)/(n-1)
=(.00016+.000052+.00021+.00053+.00040+.00006+.00040+.00002+.00021+.00289+.
00231+.00028+.00151+.00174)/13
=.00087
Average of Large-
|
0.887503593
|
|
0.907561395
|
|
0.914647822
|
|
0.877401142
|
|
0.920149004
|
|
0.907823388
|
|
0.880485947
|
|
0.896073919
|
|
0.88584494
|
|
0.954043492
|
|
0.852222311
|
|
0.9171615
|
|
0.861517592
|
|
0.942045965
|
|
0.916409303
|
(∑Obs)/n where n = 15.
(1) Mean = .901
(2) Var = (∑(obs-µ)^2)/(n-1)
=(.01473 + .00002 + .00068 +.00000 + .00076 + .00228 +
.00346 + .01263 + .00015 + .00996 + .00263 + .00954 + .00238 + .00350)/14
=.00482
(3) Mean of means= (.901 + .887)/2 = 0.895
(4) Variance of Mean of Means((.900-.89)^2 +
(.887-.894)^2)/n-1 = .000085
(5) Grand Mean
|
0.765635645
|
|
0.890993539
|
|
0.860948991
|
|
0.886212273
|
|
0.859489471
|
|
0.934212218
|
|
0.945863536
|
|
0.999423109
|
|
0.899233247
|
|
0.787217193
|
|
0.938261524
|
|
0.984696833
|
|
0.83820725
|
|
0.827858702
|
|
0.887503593
|
|
0.907561395
|
|
0.914647822
|
|
0.877401142
|
|
0.920149004
|
|
0.907823388
|
|
0.880485947
|
|
0.896073919
|
|
0.88584494
|
|
0.954043492
|
|
0.852222311
|
|
0.9171615
|
|
0.861517592
|
|
0.942045965
|
|
0.916409303
|
|
/19
|
=.8945
(6) Variance
(.0165 + .00001 + .00112 + .00007 + .00122 + .00158 + .00264
+ .01102 + .00002 + .01150 + .00192 + .00814 + .00316 + .00443 + .00005 +
.00017 + .00041 + .00029 + .00066 + .00018 + .00020 + .00000 + .00007 + .0036 +
.00178 + .00052 + .00108 + .00227 + .00048)/28
=.00268
(7) The Weird One
Obs- .8945
-0.128817625
-0.003459731
-0.033504279
-0.008240997
-0.034963799
0.039758948
0.051410266
0.104969839
0.004779977
-0.107236077
0.043808254
0.090243563
-0.056246020
-0.066594568
-0.006949677
0.013108125
0.020194552
-0.017052128
0.025695734
0.013370118
-0.013967323
0.001620649
-0.008608330
0.059590222
-0.042230959
0.022708230
-0.032935678
0.047592695
0.021956030
(-0.128817625 + -0.003459731 + -0.033504279 + -0.008240997 +
-0.034963799 + 0.039758948 + 0.051410266 + 0.104969839 +
0.004779977 + -0.107236077 +
0.043808254 + 0.090243563 +
-0.056246020 + -0.066594568 + -0.006949677 + 0.013108125 +
0.020194552 + -0.017052128 +
0.025695734 + 0.013370118 -+
0.013967323 + 0.001620649 + -0.008608330 + 0.059590222 + -0.042230959+
0.022708230 + -0.032935678 + 0.047592695 + 0.021956030)/29
= 1.15 x 10^-17
(8) (-0.128817625- 1.15 x 10^-17)^2 + (-0.003459731- 1.15 x
10^-17) ^2 + (-0.033504279- 1.15 x 10^-17) ^2 + (-0.008240997- 1.15 x 10^-17) ^2
+ (-0.034963799- 1.15 x 10^-17) ^2
+ (0.039758948- 1.15 x 10^-17) ^2
+ (0.051410266- 1.15 x 10^-17) ^2 + (0.104969839- 1.15 x 10^-17) ^2 +
(0.004779977- 1.15 x 10^-17) ^2 + (-0.107236077- 1.15 x 10^-17) ^2 + (0.043808254- 1.15 x 10^-17) ^2 + (0.090243563- 1.15 x 10^-17) ^2 +
(-0.056246020- 1.15 x 10^-17) ^2 + (-0.066594568- 1.15 x 10^-17) ^2 +
(-0.006949677- 1.15 x 10^-17) ^2 +
(0.013108125- 1.15 x 10^-17) ^2 +
(0.020194552- 1.15 x 10^-17) ^2 + (-0.017052128- 1.15 x 10^-17) ^2 + (0.025695734- 1.15 x 10^-17) ^2 + (0.013370118- 1.15 x 10^-17) ^2 +
(0.013967323- 1.15 x 10^-17) ^2 + (0.001620649- 1.15 x 10^-17) ^2 +
(-0.008608330- 1.15 x 10^-17) ^2 + (0.059590222- 1.15 x 10^-17) ^2 +
(-0.042230959- 1.15 x 10^-17) ^2+ (0.022708230- 1.15 x 10^-17) ^2 +
(-0.032935678- 1.15 x 10^-17) ^2 + (0.047592695- 1.15 x 10^-17) ^2 +
(0.021956030- 1.15 x 10^-17) ^2
All divided by 29
=0.0026
magic
Subscribe to:
Comments (Atom)

